Hyperfine structure in the atomic spectrum of niobium

I: Experimental investigation

A. Bouzed¹, S. Kröger^{2,a}, D. Zimmermann², H.-D. Kronfeldt¹, and G. Guthöhrlein³

¹ Optisches Institut, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

² Institut für Atomare Physik und Fachdidaktik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

³ Laboratorium für Experimentalphysik, Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany

Received 18 July 2002 / Received in final form 8 November 2002 Published online 4 February 2003 – © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We report on hyperfine structure measurements in 21 lines of atomic niobium in the spectral region from 640 nm to 870 nm by means of optogalvanic laser spectroscopy and laser induced fluorescence spectroscopy using a hollow cathode discharge and a tunable single-mode cw ring laser. Hyperfine structure constants A and B of altogether 29 excited energy levels were determined, 18 of them for the first time.

PACS. 32.30.Jc Visible and ultraviolet spectra - 31.30.Gs Hyperfine interactions and isotope effects, Jahn-Teller effect

1 Introduction

The atomic spectrum of niobium is characterized by the large hyperfine structure of the only stable isotope 93 Nb with nuclear spin 9/2 caused by the large nuclear magnetic dipole moment of $\mu_I = 6.1705 (3) \mu_N$ [1]. Therefore in many transitions it is adequate to apply Doppler limited experimental techniques for an accurate determination of the hyperfine interaction constants A. In contrast to the large magnetic dipole interaction the additional shift caused by the electric quadrupole interaction is very small due to the small nuclear electric quadrupole moment Q = -0.36 (7) b [1]. For this reason it is difficult to get precise values of the B constants from optical spectroscopy.

Up to now, the hyperfine structure of 52 levels of Nb I has been determined using different experimental methods. The two lowest multiplets $4d^45s$ ⁶D and $4d^35s^2$ ⁴F have been studied with high accuracy by Büttgenbach *et al.* [2] using the atomic beam magnetic resonance method. Fraenkel *et al.* [3] reported on the hfs interaction constants of 17 metastable levels of the three even configurations $4d^35s^2$, $4d^45s$ and $4d^5$ and 14 levels of the odd configurations $4d^35s5p$ and $4d^45p$ by means of high resolution laser and radio frequency double resonance techniques. In the wavelength region covered by the dye rhodamine 6G Doppler limited optogalvanic laser spectroscopy technique was applied by Singh *et al.* [4,5] to study the hyperfine structure of altogether 34 excited levels. Using resonance ionization spectroscopy the hyperfine splitting of the ground level and of three odd and one even excited level were measured by Lauranto *et al.* [6].

In the present work we report on an experimental determination of the hyperfine structure constants of levels of the even configurations $4d^35s^2$, $4d^45s$, $4d^5$, $4d^46s$ and $4d^35s6s$ and the odd configurations $4d^45p$ and $4d^35s5p$ using optogalvanic laser spectroscopy and laser induced fluorescence spectroscopy. A detailed parametric hyperfine structure analysis based on these data is given in a separate paper [7].

2 Experimental

Doppler-limited optogalvanic laser spectroscopy and laser induced fluorescence spectroscopy with a tunable singlemode cw ring laser (titanium-sapphire or dye laser with DCM) was applied to investigate the hyperfine structure. A see-through hollow cathode lamp with a liquid nitrogen cooling system [8] served to evaporate the niobium. The cathode was 15 mm long and had a 3 mm bore whose surface was covered with a 0.125 mm Nb foil. The hollow cathode gas discharge was run with a current between 40 mA and 70 mA in an argon atmosphere at around 1 mbar. More details of the experimental setup are given in [9].

Altogether 21 lines of atomic Nb have been investigated in the spectral range from 640 nm to 870 nm.

^a e-mail: sk@kalium.physik.tu-berlin.de

Fig. 1. Part of the energy level scheme of Nb I showing the transitions investigated; energies are in cm^{-1} (not to scale), wavelengths are in nm. Electronic configuration and parity are given at the right.

They are summarized in Figure 1 showing part of the energy level scheme of Nb I. The lines measured by means of optogalvanic spectroscopy are listed in Table 1 and those measured by means of laser induced fluorescence spectroscopy in Table 2 with the specification of the fluorescence wavelength. In some cases the lines lie very close, so that the hyperfine spectra of two neighbouring lines are overlapping. To separate such lines the method of laser induced fluorescence is required.

All six lines of Table 1 and one of the 15 lines of Table 2 are already listed in the M.I.T. wavelength tables [10]. The remaining 14 lines (given without an intensity entry in Tab. 2) are new lines. Their wavelengths have been calculated from the energy difference of selected known levels, one of them being of particular interest in every case. By finding consistent niobium hyperfine patterns using the expected wavelengths λ_f for the laser induced fluorescence detection we feel ultimate confidence in these new lines.

An example of a 12 component hyperfine pattern measured by applying laser induced fluorescence spectroscopy is presented in Figure 2 together with the best fit.

Table 1. Nb I transitions investigated by means of optogalvanic spectroscopy; wavelengths and intensities are according to [10]; *italic*: levels of odd parity.

		lower level		upper level	
$\lambda_{ m air}/ m nm$	int.	E/cm^{-1}	J	E/cm^{-1}	J
643.046	80	5965.45	5/2	21 512.18	7/2
654.461	80	9497.52	7/2	24 773.03	5/2
660.7276	15	13404.77	5/2	28 535.36	7/2
666.084	300	9497.52	7/2	24 506.53	9/2
670.988	15	9497.52	7/2	24 396.80	5/2
672.362	100	8705.32	3/2	23574.14	5/2

Table 2. Nb I transitions investigated by means of laser induced fluorescence spectroscopy with specification of the fluorescence wavelength $\lambda_{\rm f}$ (+: decay of the upper level of the laser transition, -: decay of the lower level); intensities according to [10]; *italic*: levels of odd parity.

		lower level		upper level		
$\lambda_{ m air}/ m nm$	int.	E/cm^{-1}	J	E/cm^{-1}	J	$\lambda_{ m f}/{ m nm}$
816.058		13629.15	1/2	25 879.81	1/2	388.61^{+}
818.807		26067.06	3/2	38276.59	5/2	389.37^{-}
823.388		25 879.81	1/2	38021.41	3/2	388.61^{-1}
824.344		26440.33	9/2	38567.85	9/2	590.06^{-1}
832.093	500	9497.52	7/2	21 512.18	7/2	534.42^{-}
833.695		25 879.81	1/2	37871.30	1/2	388.61^{-1}
843.696		14211.30	3/2	26 060.65	5/2	576.03^{+}
846.790		26 832.43	7/2	38638.47	7/2	387.76^{-1}
849.001		26067.06	3/2	37842.36	5/2	389.37^{-}
851.748		26440.33	9/2	38177.65	7/2	590.06^{-1}
851.887		26 832.43	7/2	38567.85	9/2	387.76^{-1}
853.101		14211.30	3/2	25930.01	3/2	570.65^{+}
854.541		25879.81	1/2	37578.72	3/2	388.61^{-1}
855.850		27419.62	9/2	39100.73	9/2	379.21^{-1}
867.037		25 879.81	1/2	37410.17	1/2	388.61^{-1}

In order to obtain the hyperfine interaction constants A and B the recorded spectra have been fitted using Voigt profiles for the individual hyperfine components. The fit parameters were the centre of gravity of the total hyperfine structure, the A and B constants of the upper and the lower level, the Gaussian and Lorentzian part of the Voigt profile and two parameters to take into account background and slope. Depending on the discharge current the Gaussian line width varied from 800 MHz to 1000 MHz for the lines in the red wavelength region and from 550 MHz

Fig. 2. Experimental intensity distribution of the Nb I transition $4d^45s \ {}^4P_{3/2} \longrightarrow 4d^45p \ {}^4F_{5/2}$ at $\lambda = 843.696$ nm measured with laser induced fluorescence spectroscopy together with the best fitted curve. In the lower part of the figure the residuals between experiment and calculation are given, multiplied with a factor of 3. The components are assigned by the total angular momentum F of the lower and upper hyperfine levels. The theoretical intensities are indicated by arrows relative to the intensity of the strongest component.

to 700 MHz for the lines in the near infrared region, corresponding to a Boltzmann temperature of about 500 to 800 K.

In most cases the observed intensity ratios of the hyperfine structure components differ from the theoretical intensity ratios. This is caused by two different effects, namely hyperfine pumping and a saturation for high laser intensity. The latter effect results in an intensity reduction and broadening of the strong hyperfine components, which leads to an apparent intensity increase of the weak components. As a consequence the Lorentzian contribution differs for the individual hyperfine components and the ratio of the intensities of the components is not in accordance with the theoretical ratios calculated for local thermodynamic equilibrium. For this reason all spectra with well separated hyperfine components are fitted with individual profile parameters and intensity parameters for each hyperfine component. To show the intensity increase of the weak components in Figure 2 the theoretical relative intensities are given as arrows (the arrows are normalized to the strongest hyperfine component).

To analyze the spectra showing unresolved hyperfine structure the number of parameters had to be reduced. For this reason the ratio of the Lorentzian line width and the intensities of the different components were fixed to the ratios obtained from a fit of another spectrum with the same J quantum numbers and well separated hyperfine components whereas the Gaussian line widths of all components were assumed to be equal. Sometimes the values of the hyperfine constants A and B of one level have been fixed additionally if they were already known from literature. These hyperfine constants are marked in Table 3 with an asterisk.

3 Results

The magnetic dipole and electric quadrupole hyperfine interaction constants A and B of altogether 29 energy levels have been determined experimentally. Out of these, the values of nine (from 16) even parity levels and also of nine (from 13) odd parity levels have been measured for the first time. In Table 3 the results are compiled together with all A and B values found in the literature for the even parity levels and equally in Table 4 for the odd parity levels. The hyperfine spectrum of each of the investigated lines has been recorded and fitted ten times. The given Aand B constants are the mean of the "Best"-values of the ten fits, the error margins are the standard deviation. In the cases, where the hyperfine interaction constants of one of the combining levels were fixed during the fit, the errors given take into account the standard deviation and the error propagation due to the error margins of the introduced hyperfine interaction constants.

With few exceptions, the A and B values from different sources agree within the limits of error.

One exception is the level $4d^45s \ b^4P_{3/2}$ at 14211.30 cm⁻¹, where our results show a very large deviation from the values given in [5]. To check our results, we have determined the *A* and *B* constants of this level by evaluating the hyperfine spectra of two spectral lines starting from this level. The good consistence of the obtained results is obvious (see Tab. 3).

The other exception refers to the levels 18791.09 cm^{-1} and 25879.81 cm^{-1} (see Tab. 4). These are levels where energy differences measured by resonance ionization spectroscopy from [6] were used for the determination of the A values. The inconsistency is not only between our values and those from [6] but also between values from [4] and [6]. One of our values was confirmed by investigation of different transitions. We could not find any reason for this huge discrepancy. Three of the five values determined from [6] are in agreement with the values of other authors.

4 Conclusion

Optogalvanic and laser induced fluorescence spectroscopy in a hollow cathode discharge were performed for the determination of the magnetic dipole hyperfine structure constants A of Nb I with high accuracy. The measured electric quadrupole hyperfine structure constants Bare less accurate, due to the very small nuclear electric quadrupole moment. However, the accuracy of the B constants is comparable with the accuracy of other optical measurements [4,5].

Hyperfine structure data of altogether 29 excited energy levels have been achieved, greatly extending previous data. The large quantity of new hyperfine structure data together with the data available from the literature provides an enlarged basis suitable for a detailed theoretical analysis using the effective operator formalism. This will be treated in part II of this work [7] for the even configurations.

Table 3. Experimental hyperfine structure constants A and B of the levels of even parity of Nb I from the present work and from [2–6]. The wavelength given in column 3 specifies the line which was used to determine the A and B values, m: determined from more than one transition; abmr: atomic beam magnetic resonance technique, ris: resonance ionization spectroscopy, lrf: laser radiofrequency double resonance technique, ogs: optogalvanic spectroscopy, lif: laser induced spectroscopy.

E/cm^{-1}	level	$\lambda_{\rm air}/{\rm nm}$	A/MHz	B/MHz	method	references
0.00	$4d^45s$ $^6D_{1/2}$		1868.2184(18) 1 840 [†]	0	abmr	[2]
154 10	$4d^{4}5c^{6}D$		852 5428 (21)	64572(41)	obmr	[0] [9]
201.00	$4a 5s D_{3/2}$		710.4750(18)	-04.572(41) 47.605(30)	abiii	[2] [2]
605.25	$4a 5s D_{5/2}$		600, 1078, (16)	-47.005(39)	abiii	[4] [2]
1 050 26	$4a \ 5s \ D_{7/2}$		690.1978(10)	20.473(73) 122 754(116)	abmr	[2] [2]
1030.20 1142.70	$4a \ 5s \ D_{9/2}$		691.0141(22)	152.754(110)	abmr	[2] [9]
1 142.79	$4a^{+}3s^{-}F_{3/2}$	566.470	634.7(10.0)	32.800(128) 30.8(30.0)	ogs	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
1586.90	$4d^35s^2 {}^4F_{5/2}$		372.4853(17)	33.341(38)	abmr	[2]
2154.11	$4d^35s^2 {}^4\mathrm{F}_{7/2}$	578.751	$292.2022(16) \\289.5(10.0)$	$44.928(47) \\ 65.3(30.0)$	$_{\mathrm{ogs}}^{\mathrm{abmr}}$	[2] [4]
2805.36	$4d^35s^2 {}^4\mathrm{F}_{9/2}$	584.246	269.6320(26) 279.4(10.0)	64.315(130) 64.7(30.0)	abmr ogs	[2] [4]
4998.17	$4d^35s^{2} {}^4P_{1/2}$	587.776	540.1(0.9)	0	-8- lrf	[3]
		587.776	537.4(6.0)	0	ogs	[5]
5297.92	$4d^35s^2 {}^4\mathrm{P}_{3/2}$	598.322	497.7569(16)	59.902(14)	lrf	[3]
		598.322	495.5(6.0)	30(35)	ogs	[5]
5965.45	$4d^35s^2 {}^4P_{5/2}$	586.643	343.1670 (5)	-80.454(9)	lrf	[3]
		586.643 643.046	341.3(10.0) 343.4(1.1)	-122.2(30.0) -76(5)	ogs	[5] this work
8/10/00	$4d^{4}5e^{-4}D_{1}e^{-4}$	570 647	10070(11)	10(0)	lrf	[2]
8410.90	$4a 5s D_{1/2}$	570.647 570.647	2001.7(10.0)	0	ogs	[5]
8705.32	$4d^45s$ ${}^4D_{3/2}$	580.401	-143.3225(217)	-10.761(178)	lrf	[3]
		576.032	-136.9(6.0)	-69(35)	$_{\mathrm{ogs}}$	[5]
		672.362	-142.7(1.6)	7(17)	ogs	this work
8827.00	$4d^35s^2 {}^2\mathrm{G}_{7/2}$	580.099	420.2938(11)	-49.006(36)	lrf	[3]
9043.14	$4d^45s$ $^4D_{5/2}$	$587.467 \\ 583.860$	$\begin{array}{c} -407.8606(43)\\ -408.6(10.0)\end{array}$	$35.060\ (75)\ 38.9\ (30.0)$	$ \operatorname{lrf} \operatorname{ogs} $	[3] [4]
9328.88	$4d^35s^2 {}^2\mathrm{G}_{9/2}$	584.242	358.5642(8)	-61.048(30)	lrf	[3]
9439.08	$4d^35s^2 {}^2\mathrm{D}_{3/2}$	584.178	389.1039(23)	73.590(19)	lrf	[3]
9497.52	$4d^45s$ ${}^4D_{7/2}$	591.943	$-477.0373\left(35 ight)$	126.899(81)	lrf	[3]
		590.057	-474.4(2.0)	90(35)	ogs	[5]
		654.461 670.988	-477.3(1.8) -478.0(1.7)	88 (50) 98 (30)	ogs	this work
		832.093	-476.9(6)	131(8)	lif	this work
		666.084	-475(2)	86 (50)	ogs	this work
10126.06	$4d^35s^2 {}^2\mathrm{P}_{1/2}$	602.545	323.6590(4)	0	lrf	[3]
10237.51	$4d^35s^2 {}^2D_{5/2}$	m	295.6803(6)	36.501(12)	lrf	[3]
11318.09	$4d^35s^2 {}^2\mathbf{P}_{3/2}$	583.811	167.3182(25)	-5.805(21)	lrf	[3]
11344.70	$4d^5$ ${}^{6}S_{5/2}$	590.380	-639.3786(79)	-0.061(92)	lrf	[3]
		m	-644.5(6.5)	—	ogs	[5]
12018.25	$4d^45s$ $^2G_{5/2}$	581.533	-101.2(6.0)	_	ogs	[5]
12102.12	$4d^{3}5s^{2}$ ² H _{9/2}	582.254	384.9669(33)	-163.323(96)	lrf	[3]
13404.77	$4d^35s^2 {}^4\mathrm{F}_{5/2}$	577.483	302.525555(9)	-43.908(19)	lrf	[3]
19 515 00	4 d ³ 5 a ² 45	000.730 E91.100	303(4)	-24(20)	ogs	UIIS WORK
13 515.20	$4a^{-}3s^{-}F_{7/2}$	581.190	130.9050(6)	-48.916 (14)	Irt	[3] [=]
13 629.15	$4a^{-}3s^{-}P_{1/2}$	509.788 816.058	2 906.3 (6.0) 2 939.1 (8)	0	ogs lif	^[5] this work

E/cm^{-1}	level	$\lambda_{\rm air}/{\rm nm}$	$A/{ m MHz}$	B/MHz	method	references
14211.30	$4d^45s {}^4\mathrm{P}_{3/2}$	589.343	-787.0(6.0)	-100(35)	$_{ m ogs}$	[5]
		843.696	1414.5(2)	31(4)	lif	this work
		853.101	1414.4(4)	29(3)	lif	this work
15282.35	$4d^45s$ ${}^4D_{7/2}$	m	957.3(5.0)	_	ogs	[5]
18035.97	$4d^45s$ $^2G_{9/2}$	m	707.8(6.0)	18.0(35.0)	$_{\mathrm{ogs}}$	[5]
37410.17	$4d^46s$ $^6D_{1/2}$	867.037	-986.3(4)	0	lif	this work
37578.72	$4d^46s$ $^6D_{3/2}$	854.541	-199.0(2)	-70(6)	lif	this work
37842.36	$4d^46s$ $^6D_{5/2}$	849.001	$-86.4(1.8)^*$	$-47(30)^*$	lif	this work
37871.30	$4d^35s6s \ {}^6\mathrm{F}_{1/2}$		1800^{\dagger}	0	ris	[6]
	,	833.695	-1749.9(5)	0	lif	this work
38021.41	$4d^35s6s\ {}^6\mathrm{F}_{3/2}$	823.388	547.7(6)	-24(5)	lif	this work
38177.65	$4d^46s$ $^6D_{7/2}$	851.748	$-37\left(3\right)$	42(13)	lif	this work
38276.59	$4d^35s6s~^6{\rm F}_{5/2}$	818.807	871.9(1.0)	-10(14)	lif	this work
38567.85	$4d^46s$ $^6D_{9/2}$	851.887	4.4(7)	112(50)	lif	this work
	,	824.344	$5(2)^{*}$	$126(8)^{*}$	lif	this work
38638.47	$4d^35s6s\ {}^6\mathrm{F}_{7/2}$	846.790	958.5(8)	-59(17)	lif	this work
39100.73	$4d^35s6s \ {}^6\mathrm{F}_{9/2}$	855.850	981.8(7)	67(30)	lif	this work

 Table 3. Continued.

*: A and B constants of the lower level fixed during the fit.

†: A calculated from the energy difference of the hyperfine levels.

Table 4. Experimental hyperfine structure constants A and B of the levels of odd parity of Nb I from the present work and from [2–6]. The wavelength given in column 3 specifies the line which was used to determine the A and B values, m: determined from more than one transition; ris: resonance ionization spectroscopy, lrf: laser radiofrequency double resonance technique, ogs: optogalvanic spectroscopy, lif: laser induced spectroscopy.

E/cm^{-1}	leve	el	$\lambda_{\rm air}/{\rm nm}$	$A/{ m MHz}$	B/MHz	method	references
18791.09	$4d^35s5p$	${}^{6}\mathrm{F}_{1/2}$		1760^{\dagger}	0	ris	[6]
			566.470	-779.6(10.0)	0	ogs	[4]
19427.90	$4d^35s5p$	${}^{6}\mathrm{F}_{5/2}$	578.751	654.7(10.0)	7.0(30.0)	ogs	[4]
19916.69	$4d^35s5p$	${}^{6}\mathrm{F}_{7/2}$	584.246	680.6(10.0)	-277.7(30.0)	$_{\mathrm{ogs}}$	[4]
21512.18	$4d^35s5p$	${}^{4}\mathrm{D}_{7/2}$	832.093	872.0(7)	-34(5)	lif	this work
			643.046	873.2(5)	-41(40)	ogs	this work
22006.74	$4d^45p$	${}^{4}\mathrm{P}_{1/2}$	m	-267.3(3)	0	lrf	[3]
		,	m	-272.3(1.3)	0	ogs	[5]
23006.86	$4d^45p$	${}^{4}P_{3/2}$	586.643	-137.9(4)	-30.9(3.7)	lrf	[3]
		- /	586.643	-145.1(10.0)	-17.3(30.0)	$_{\mathrm{ogs}}$	[4]
23574.14	$4d^35s5p$	$^{4}\mathrm{F}_{5/2}$	672.362	514.5(9)	94(30)	ogs	this work
24396.80	$4d^45p$	${}^{6}\mathrm{F}_{5/2}$	670.988	277(3)	-45(30)	$_{\mathrm{ogs}}$	this work
24506.53	$4d^35s5p$	$^{4}\mathrm{F}_{9/2}$	666.084	594(3)	70(50)	$_{\mathrm{ogs}}$	this work
24773.03	$4d^45p$	$^{2}\mathrm{D}_{5/2}$	654.461	170.2(1.9)	-24(30)	ogs	this work
25879.81	$4d^35s5p$	${}^{6}\mathrm{D}_{1/2}$		4400^\dagger	0	ris	[6]
		,	823.388	1537.4(1.0)	0	lif	this work
			833.695	1537.7(9)	0	lif	this work
			816.058	1538.3(8)	0	lif	this work
			867.037	1538.1(1.2)	0	lif	this work
			854.541	1538.2(9)	0	lif	this work
25930.01	$4d^45p$	${}^{4}\mathrm{F}_{3/2}$	m	557.4(5)	57.5(4.0)	lrf	[3]
			570.647	559.6(10.0)	100.5(30.0)	ogs	[4]
			853.101	557.2(3.0)	58(3)	lif	this work

E/cm^{-1}	level	$\lambda_{\rm air}/{\rm nm}$	A/MHz	B/MHz	method	references
26 060.65	$4d^45p$ ${}^4\mathrm{F}_{5/2}$	m 576.032 843.696	266.7 (3) 261.1 (3.0) 266.7 (2)	$46.1(4.8) \\ - \\ 45(5)$	lrf ogs lif	[3] [5] this work
26067.06	$4d^35s5p {}^6D_{3/2}$	818.807	943.5(1.8)	79(3)	lif	this work
26165.79	$4d^45p$ ${}^4\mathrm{F}_{7/2}$	583.860	299.6(10.0)	96.4(30.0)	ogs	[4]
26386.36	$4d^35s5p \ ^6D_{5/2}$	591.943	809.2(5)	64.2(9.3)	lrf	[3]
26 440.33	$4d^45p$ ${}^4\mathrm{F}_{9/2}$	584.242 590.057 851.748	$\begin{array}{c} 337.6\ (2)\\ 325.0\ (2.0)\\ 337\ (2)\end{array}$	$88.6\ (8.1) \\ - \\ 49\ (8)$	m lrf m ogs m lif	[3] [5] this work
26552.40	$4d^45p$ $^6D_{1/2}$	584.178	430.1(5)	0	lrf	[3]
26713.32	$4d^45p$ ${}^6D_{3/2}$	606.782	108.6(4)	-19.6(3.0)	lrf	[3]
26717.73	$4d^45p$ ${}^4D_{1/2}$	602.545	$508.3(4) \\ 480^{\dagger}$	0 0	lrf ris	[3] [6]
26832.43	$4d^35s5p \ ^6D_{7/2}$	$846.790 \\ 851.887$	$379.0(8) \\ 377.4(1.0)$	$-95(20) \\ -105(20)$	lif lif	this work this work
27419.62	$4d^35s5p \ ^6D_{9/2}$	855.850	405.4(9)	94(20)	lif	this work
27427.07	$4d^45p$ $^6D_{7/2}$	581.587	386.0(5)	-382.(15.2)	lrf	[3]
28278.25	$4d^35s5p\ {}^6\mathrm{P}_{3/2}$	$590.380 \\ 590.380$	747.1 (8) 743.2 (6.0)	$14.7(7.6)\\19.0(35.0)$	m lrf ogs	[3] [5]
28442.16	$4d^35s5p\ ^2\mathbf{P}_{1/2}$	583.811	2242.7(1.2)	0	lrf	[3]
28445.33	$4d^35s5p \ {}^4P_{5/2}$	584.612	607.8(6.0)	150.0(35.0)	ogs	[5]
28535.36	$4d^35s5p \ {}^4\mathrm{F}_{7/2}$	660.730	662(3)	27(40)	ogs	this work
28652.66	$4d^35s5p\ ^6{\rm P}_{5/2}$	577.608	746.2(6.0)	$-154.0\left(35.0 ight)$	ogs	[5]
29209.42	$4d^35s5p \ ^4D_{7/2}$	581.533	505.4(6.0)	_	ogs	[5]
29271.99	$4d^35s5p \ {}^4 ext{H}_{7/2}$	582.254	-189.5(3)	-10.6(8.2)	lrf	[3]
30716.50	$4d^45p$ ${}^4\mathrm{F}_{5/2}$	m	477.8(4)	45.8(7.2)	lrf	[3]
31174.65	$4d^35s5p \ ^4S_{3/2}$	m	1047.0(6.0)	8.8(35.0)	ogs	[5]
32605.39	$4d^45p {}^4\mathrm{F}_{9/2}$	577.106	264.7(4.0)	-	ogs	[5]
32802.44	$4d^45p {}^4\mathrm{G}_{9/2}$	570.615	632.5(3.0)	16.5(35.0)	ogs	[5]
35156.94	$4d^45p$ ${}^4G_{9/2}$	583.917	632.5(6.0)	_	ogs	[5]
35496.39	$4d^45p$ $^2\mathrm{H}_{9/2}$	572.565	522.7(6.0)	-58.0(35.0)	ogs	[5]

 Table 4. Continued.

 $\dagger: A$ calculated from the energy difference of the hyperfine levels.

References

- C.M. Lederer, V.S. Shirley, *Tables of Isotopes*, 7th edn. (Wiley, New York, 1978)
- S. Büttgenbach, R. Dicke, H. Gebauer, M. Herschel, G. Meisel, Z. Phys. A 275, 193 (1975)
- L. Fraenkel, C. Bengtsson, D. Hanstrop, A. Nyberg, J. Persson, Z. Phys. D 8, 171 (1988)
- 4. R. Singh, G.N. Rao, Phys. Scripta 40, 170 (1989)
- R. Singh, R.K. Thareja, G.N. Rao, J. Opt. Soc. Am. B 9, 493 (1992)
- H.M. Lauranto, I.H. Auterinen, T.T. Kajava, K.M. Nyholm, R.R.E. Salomaa, Appl. Phys. B 50, 323 (1990)
- 7. S. Kröger, A. Bouzed, Eur. Phys. J. D 23, 63 (2003)
- H.-O. Behrens, G.H. Guthöhrlein, B. Hähner, Laser Elektro-Opt. 1, 27 (1982)
- G.H. Guthöhrlein, H.P. Keller, Z. Phys. D 17, 181 (1990)
 G.R. Harrison, *M.I.T. Wavelength Tables* (The MIT Press, Cambridge, Mass., London, 1969)